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1. INTRODUCTION ...-.

In recent years theoretical physicists have been very interested in a certain

class of non-linear partial differential equations known as evolution equations.1 ,2

This interest has arisen from the realization that these equations possess a special

type of elementary solution which takes the form of localized disturbances which

act somewhat like particles and are therefore known as solitons.

Solution of these evolution equations involves the so-called inverse scattering
transform.1 ,2, 3 In this connection it has been noted4 ,5, 6 that there is a relation

between non-linear partial differential equations solvable by an inverse scattering

transform and non-linear ordinary differential equations (ODE) without movable
critical points; such ODE's are said to have the Painlevdd property. An algorithm iiii"

has been developed5 ,6 for the determination whether a given system of differential

equations has the Painlevd property.
In applying the algorithm to test systems of differential equations for the

Painlevd property, the question naturally arises to what extent useful information

can be obtained on the properties of a given differential equation by simple inspec-

tion of the equation without extensive calculation. This paper explores this question

and provides a simple approach for identifying higher order differential equations
possessing necessary conditions to have the Painlevd property. More extensive

-- tests are then required in order to determine whether these necessary conditions

are sufficient for specific equations to have the Painlevd property.

,.. ..

-.. . . -. ..
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L
II. DOMINANCE CLASSES AND FAMILIES

In this work we are interested in evolution equations of the form

ut + f(x,u,Uix,...,unx)=O (1)

in which

ut = and Ujx = ()J u j=0,1,...,n (2)

In these equations u may be regarded as an amplitude, x as a distance, and t as ,
time. Of particular interest are time-independent solutions where ut=O and there-

fore

f(x,uUx,...,nx)=0 (3)

Let us adjust the distance scale x so that x=x* is a critical point. The dominant
behavior of solutions of equation 3 in the neighborhood of the critical point x=x*
can be expressed as the following series:

u=a(x - x*)P as x x* (4)

Substitution of equation 4 into equation 3 shows that for certain values of the
exponent p, two or more terms may balance (possibly depending upon a) and the
rest can be ignored as x-x*. For each choice of p the terms which can balance
are called the dominant terms. Modification of equation 3 by deletion of all non-
dominant terms in general leads to a new simpler equation called the dominant
truncation of equation 3. All equations giving the same dominant truncation may
be considered as forming a dominance class. All dominance classes which have
identical dominant truncations except for multiplicative constants may be regarded
as forming a dominance family. A self-dominant equation is one in which all of
its terms are dominant and is therefore identical to its dominant truncation.

Painlevi. 7 has identified 50 canonical forms of second order differential equa-

tions which lack movable critical points and which therefore are related to non-
linear differential equations solvable by inverse scattering transforms. The methods
and ideas to be used in this paper can first be illustrated with the simplest irreduc-

-1
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ible Painlevd equation, namely a.

Uxx = 6u2 + x (5)

Expressing u by equation 4 gives

ap(p-1)(x - x*)P"2 = 6a2 (x - x*) 2P X (6)

Balancing the (x - x*)P"2 term on the left with the (x - x*) 2P term on the right

gives p -2 = 2p or p = -2. The x term on the right of equations 5 and 6 is not involved

in the balancing. Such terms are called recessive terms and are those dropped -.

from the differential equation to form its dominant truncation. Thus the dominant ..

truncation of equation 5 is

Uxx = 6u 2  (7)

Equation 7 is also the Painlevd canonical equation II which is solvable by elliptic

functions. 7

The next simplest irreducible Painlevd equation is

Uxx = 2u3 + xu + b (8)

Analogously expressing u in equation 8 by equation 4 gives

ap(p-1)(x - x*)P- 2 = 2a 3(x - x') 3 P + ax(x - x*)P + b (9)

Balancing the (x - x*)P"2 term on the left with the (x -x*) 3P term on the right

gives p - 2 = 3p or p = -1. The (x - x*)P term on the right of equation 9 cannot

be involved in the balancing since p -2 i p. This term is therefore a recessive --- '-,

term as is the constant term b of equation 8. Therefore the dominant truncation

of equation 8 is

Uxx 2u (10)

A simple type of second order differential equation reducible to a first order differ-

ential equation of Riccati type is the Painlevd canonical equation V, namely

[......,v.,..;_..r.,.,_-,_..' _ ... a _ c_.._,._ ._. ._..-. .. . *. ...... .. ............... . .



-4-

Uxx = -2uU x + bux + b'u (11)

Methods analogous to those used above indicate that p = -1 for equation 11 and -

that its dominant truncation it

uxx = -2UUx (12)

Thus equations 8 and 11 lead to the same value for the exponent p when expanded

in the neighborhood of a critical point by using equation 4 but lead to dominant

truncations having very different forms. Thus equation 8 and 11 are in different

dominant families.

Second order differential equations without movable critical points are also

possible which have dominant truncations which are linear combinations of equations

of the types 10 and 12. This phenomenon, which can be called hybridization, is

possible because equations 10 and 12 lead to the same value of the exponent p

when equation 4 is substituted into them. The simplest example of hybridization

in the Painlevd canonical equations7 occurs in Painlevd equation VI, namely

Uxx = - 3 uux - u3 + bux - bu2  (13)

The dominant truncation of equation 13 is

Uxx =-
3 uux- u3  (14)

This is a linear combination of equations 10 and 12 with appropriate adjustments

of the multiplicative constants.

Another phenomenon is observed in the third and higher irreducible Painlevd

equations. 7 Thus the third irreducible Painlevd equation (canonical form7 XII)

is

Uxx (UX2 /u) + bu3 + cu2 + d + (e/u) (15)

Substituting equation 4 into equation 10 gives

ap(p-1)(x - x*)P 2 = ap 2 (x - x*)P 2 + ba3 (x - x*) 3P + ca2 (x - x') 2P
+ d + (e/a)(x - x*)'P (16)

. ., . . • . _ ..... ... ,.•. ... . .. . . . . .. ....... ..........-....... ..- .*.... . ,-..... .-...-. :.--,
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The ap 2 (x - x*)P"2 and ba 3(x - x*)3P terms on the right of equation 16 are both

dominant terms but only the ba 3 (x - x*) 3P term can be used to determine the .

exponent p to be -1. The ba3 (x - x*) 3P term may therefore be considered to be

an active dominant term. Similarly ap 2 (x - x*)P- 2 may be regarded as a passive

dominant term. Self-dominant equations having only active dominant terms may

be called strongly self-dominant equations. Since passive dominant terms are

not found in the evolution equations of interest, only strongly self-dominant equa-

tions will be considered in this paper. These will be seen to relate closely to the

evolution equations.

.. . . .. . . . .. ..--

. . -. °
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Ill. PAINLEVE ANALYSIS OF STRONGLY SELF-DOMINANT EQUATIONS

We will now consider the general features of the so-called Painlevd analysis

used to determine whether a given strongly self-dominant differential equation

has the Painlevd property. Such equations can be expressed as polynomials of

the following type:

n-1 qj
Unx =g(x,u, Ulx,...,U(n-1)x) = ci Ujx (17)

i j=0

in which n is thus the order of the differential equation. Let us now assign to

equation 17 the following integers:

n = order of the equation (order of the derivative unx on the left-hand side

of equation 17 which is the highest order derivative in the equation).

n-1 r
mi = j iqj (the weighted sums of the derivatives in the terms on the right-

j=0 hand side of equation 17)

n-1
di = qj (degrees of the polynomial terms on the right-hand side of equation

j=0 17)

In general m i  m k and di it dk. However, initially we shall consider homogeneous

equations (17) in which m i = m k and di = dk for all values of i and k. For such

a homogeneous equation we can assign unique values of m and d. Let us call m
and d the co-order and the degree, respectively, of the equation.

Let us now apply Painlevd analysis to equation 17. Express u as the power

* series in equation 4. Determine the exponent p which balances the terms. By

taking appropriate derivatives of equation 4 the following relationship can be
seen to hold:

P (18)

If p is not an integer, then equation 17 has a movable algebraic branch point

implying non-Painlevd behavior. We are therefore interested in self-dominant

systems of the type represented by equation 17 for which p as determined by equa-

tion 18 is a negative integer.

If p (equation 18) is a negative integer, then equation 4 may represent the

*- ~ .. . . . . . ...1 .,... . . ,7.. -. .-- . . .



-7-

first term in a Laurent series8 valid in a deleted neighborhood of a movable pole.

In this case a solution of equation 17 is of the following type:

u (x - x*)P I ak(x -x*) k  (19)
k =0

where x - x* 4 0. In this case the position x* of the singular value of x corresponds

to one of the n integration constants. If n-1 of the coefficients ak are also arbit-

rary, the n integration constants of equation 17 are then accounted for and equation

19 represents the solution of equation 17 in the deleted neighborhood of the singu-

larity x*. The powers of x at which these arbitrary constants enter are called

the resonances and will be designated as ri, r2 , ... , rn so that ri<rk for i<k. -.

In order to find the resonances the following equation for u is substituted into

equation 17:

u = a(x - x*)P + b(x - x*)p+ r (20)

The coefficient a is obtained by equating the coefficients of the (x - x*)P-n terms

which are the leading terms in the neighborhood of x*. For a homogeneous equation

17 the coefficient a is uniquely determined. After determining a then the coeffic-

ients of the next higher powers (x - x*)p+r~n are equated in order to determine

the resonances. In this way the resulting equations for the resonances to leading

order in b reduce to

Q(r)b(x - x*)q =0 q>p+r-n (21)

in which Q(r) is a polynomial in r of degree n. The roots of Q(r) determine the

resonances since Q(r) = 0 corresponds to the "indicial equation" used to solve a

linear ordinary differential equation near a regular singular point. 9

Let us now consider some features of this indicial polynomial Q(r). Because

of the rules for differentiation, the left-hand side of equation 17 will generate

the n-th degree polynomial L(r) of the following type:

L(r) =(r p)(r + p - 1) (r+ p - n) (22)

Since p is a negative integer, L(r) is not divisible by r+1 and all of its roots are

" real positive integers. However, the polynomial Q(r) must be divisible by r+1

h.. - -. . .
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reflecting the arbitrariness of the singularity x=x* corresponding to one of the

n integration constants. This leads to an automatic root of -1 for Q(r). Therefore

substitution of equation 20 into the right-hand side of equation 17 must generate

a polynomial R(r) so that the difference L(r) - R(r) is divisible by r+1 and is

factorable into linear factors so that all of its roots are real integers. However,

the degree of R(r) is m<n so that the terms in L(R) of the type hkrn-k in which

n-k>m will be the same as the corresponding terms of the indicial polynomial

Q(r).
Arguments based on the relationships between the coefficients of the highest

degree terms of polynomials and the sums of powers of their roots 10 indicate that

the degree of R(r), which corresponds to the co-order m of the original differential

equation (17), must be high enough so that the difference L(r) - R(r) with L(r) ..

defined by equation 22 becomes divisible by r+1 while remaining factorable into "1

linear factors even though L(r) itself is not divisible by r+1. Otherwise the

corresponding differential equation (17) will not have the Painlevd property. For - 4
this reason only differential equations (17) having p = -1 or p = -2 can be candidates

for equations having the Painlevd property.

The next step is to find the roots of Q(r). If all of the roots of Q(r) other than

the automatic -1 roots are real integers with at least one root greater than -1,

then the system can be free from algebraic branch points. The corresponding

homogeneous differential equation (17) is a possible candidate for a system having . .

the Painlevd property. The complete Painlevd analysis requires additional steps

involving determination of the integration constants.5 These additional steps

are sufficiently more complicated and tedious so that they cannot readily be applied
to the diverse variety of systems considered in this paper. We shall therefore

limit the discussion in this paper to the identification of the types of differential

equations (17) which can lead to the integral resonances required for the Painlevd

property.

~ - ... . . . . . . . . . . . . . .
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IV. RESULTS

Table 1 lists all of the possible types of strongly self-dominant homogeneous -

differential equations of order < 4 which have the negative integral balancing

exponents p (equation 18) required for the Painlevd property. Of these sixteen

equation types, nine are shown by the methods outlined above to have the real

integral resonances required for the Painlevd property. These nine equations

are all members of the three Painlevd chains described in Table 2. In this context

a Painlevd chain consists of a chain of differential equations of the following

type:

Unx (a) [u(m-n+p)/P]; m = 1,2,... (23)ax

The Painlevd chains may be characterized by the fraction (n-m)/(d-1) which by

equation 18 is the negative of the exponent p. The three Painlevd chains depicted

in Table 2 are the only possible Painlevd chains for which n-m < 2 and therefore

for reasons outlined in the previous section are the only possible Painlevd chains

giving the integral resonances required for the Painlev4 property. Note also that

each member of a Painlevd chain has all of the resonances of the previous member

plus one additional resonance. In ascending a Painlevd chain to higher orders

through the successive differentiations implied by equation 23, points may be

reached where the indicial polynomial Q(r) has a multiple root (i.e., order 4 for

the 2/2 chain and order 5 for the 2/1 chain) and a point is reached where the right-

hand side of the differential equation splits into more than one term. The algorithm

" for determining the resonances is independent of the parameter k (see Table 1)

" since products of the type kad-l (a from equation 4 for u) are constant. Hovever,

in equations having multiple terms on the right-hand side, the positions of the

resonances depend upon the ratios of the coefficients of these terms. However,

the process of obtaining the members of a Painlevd chain through equation 23

and the implied successive differentiations suggest ratios between the coeffic-

ients of the terms on the right-hand side as given in Table 1 and 2 which may

have special significance.

Table 2 also indicates the relationships of the Painlevd chains to the evolution

equations. Each of the three Painlevd chains contains at least one of the evolution

equations. The 2/1 chain is the most important one in this connection since it

• "contains both the Korteweg-de Vries and Boussinesq equations. The higher order

.......................................... .- .. . . .. . ....-...:: . ..,.... ~~~~~..... ..... .... ,......... ..... •..........-... ...-..................... ,......,......,...,-..._,
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equations in the three Painlevd chains of Table 3 are interesting candidates for '... ..'
detailed future study, since some of them are possibilities for new equations solvable

by the inverse scattering transform or related methods.

Note from Tables 1 and 2 that the 2/2 and 1/1 chains have the same exponent
p, namely -1. The homogeneous equations of a given order in these chains can

be mixed to give a hybrid equation which is still self-dominant. Similar mixing
of homogeneous differential equations of a given order and fractions 4/2 and 2/1

(i.e., p = -2) can also give hybrid self-dominant equations; this latter type of mixing
is important in the study of fifth-order evolution equations as discussed below.
Note that mixing a 4/2 equation with a 2/1 equation of the same order can give

a hybrid equation with the integral resonances required for the' Painlevd property
even though a pure 4/2 equation cannot have the Painlevd property since it has

complex resonances rather than integral resonances.
2 + uu x)Let us consider hybridization of the third-order equations u3x = k(ux 2

(fraction 1/1) and u3x = k'u2ux (fraction 2/2); the latter is the dominant truncation
of the modified (cubic) KdV equation. If the 1/1 coefficient ratio of the 2 and
uu2x terms is preserved, the resulting hybrid can be expressed in the following

form:

u3x = ux + U2x hu2ux (24)

Balancing the (x - x*)- 4 terms according the Painlevd procedure gives the following

quadratic equation for a:

a2 6 0 (25)

h h

Therefore

a = ±- 9 +24h (26)
2 2h

Thus for any value of h>-3/8, a has two values indicating two solution branches.
Such multiple solution branches are a characteristic of hybrid equations.

Table 3 illustrates the Painlevd analysis for the hybrid third-order differential
equation 24 using as examples several values of h leading to rational values of
a. In three of the four cases one of the two solution branches has a "good" set
of resonances for the Painlevd property (resonances at -1 and two other distinct

integers including at least one positive integer) > -1 and the other branch has *•-•'-

.. . . . . . . . . . .. . . . . . .... .. o.-... ..- - ,. o . -- -- •.° - -,

,.%= • .. . . o . . . . °° • °. . .**........ .. .... ..= " _," o". . = . '. _.- = _ J _ 1 _ " . °-
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a "flaw" in its set of resonances (non-integral resonance or a double root). Note, -

however, that regardless of the values of h and a, two of the three resonances
in equation 24 appear at -1 and +3 which are the two resonances possessed by

both components of the hybrid, namely u3x k(ux + uu2x).

4 summarizes the Painlev analysis for the three homogeneous fifth-order

differential equations which are members of the three Painlevd chains in Table

2 as well as three hybrid fifth-order differential equations which have been studied

. as evolution equations. All three of the hybrid systems are mixtures of the 2/1

quadratic and 4/2 cubic fifth-order differential equations. The following points

about these fifth-order hybrid differential equations are of interest:

(1) In contrast to the third order differential equations of Table 3 the ratios between

the coefficients of the uxu2x and uu3x terms of the 2/1 components (designated

as r12/r03 ) are different for the hybrid systems than for the pure homogeneous

fifth-order 2/1 equation generated by the successive differentiations implied by -

equation 23. Thus for the homogeneous systems r12/r03 is 3 whereas for the hybrid

systems r12/r03 is 1, 5/2, and 2 for the Caudrey-Dodd-Gibbon, the Kuperschmidt,

and the higher order Korteweg-de Vries equations, respectively. The hybrid systems

may therefore be viewed as being generated from the pure 2/1 system by perturbing

the ratio r12/r03 from that generated for the pure system by differentiation (namely

3) and then mixing in enough of the 4/2 equation (i.e., U5x= k'u2 ux) to restore

the integral resonances required for the Painlev property.

(2) For reasons noted above the fifth-order 2/1 + 4/2 hybrid equations have two

solution branches arising from the two roots of a quadratic equation analogous

to equation 25. In all three cases one solution branch has all integers greater

than the mandatory -1 resonance whereas the other solution branch has one reson-

ance below -1 in addition to three distinct integral resonances greater than -1.

S~ .~ * . *
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V. SUMMARY

This paper demonstrates a simple way of classifying higher order differential

equations based on the requirements of the Painlev4 property related to the solubil-

ity of the equation by inverse scattering transform methods.1 ,2 , 3 As expected

the known evolution'equations such as the Korteweg-de Vries, Burger, Boussinesq,

and Caudrey-Dodd-Gibbon equations occupy prominent positions in this classification

scheme. This classification scheme also identifies new potential candidates for

higher order differential equations with the Painlev4 property and possibly soluble

by inverse scattering transform methods. A major objective of this paper is to

stimulate further work which hopefully will relate the ideas in this paper to such

important aspects in the study of evolution equations as the generation of Lax

:pairs, 11 ,1 2 conservation laws, 1 ,2 Bilcklund transformations, 1 2 , 1 3 , 1 4 , 1 5 , 16 recursion

relations, 6 ,1 2  Schwarzian derivatives,1 2,14,15,16,17 and prolongation
structures18,19 as well as details of the inverse scattering transform procedure. 1 ,2 , 3
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